Главная - Файлы
В случайном эксперименте монету. Математика и мы. Задачи о подбрасывании монеты

Формулировка задачи: В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл (решка) не выпадет ни разу (выпадет ровно/хотя бы 1, 2 раза).

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 10 (Классическое определение вероятности).

Рассмотрим, как решаются подобные задачи на примерах.

Пример задачи 1:

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу.

ОО ОР РО РР

Всего таких комбинаций получилось 4. Нас интересуют только те из них, в которых нет ни одного орла. Такая комбинация всего одна (РР).

P = 1 / 4 = 0.25

Ответ: 0.25

Пример задачи 2:

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза.

Рассмотрим все возможные комбинации, которые могут выпасть, если монету бросают дважды. Для удобства будем обозначать орла буквой О, а решку – буквой Р:

ОО ОР РО РР

Всего таких комбинаций получилось 4. Нас интересуют только те из них, в которых орел выпадает ровно 2 раза. Такая комбинация всего одна (ОО).

P = 1 / 4 = 0.25

Ответ: 0.25

Пример задачи 3:

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно один раз.

Рассмотрим все возможные комбинации, которые могут выпасть, если монету бросают дважды. Для удобства будем обозначать орла буквой О, а решку – буквой Р:

ОО ОР РО РР

Всего таких комбинаций получилось 4. Нас интересуют только те из них, в которых орел выпал ровно 1 раз. Таких комбинаций всего две (ОР и РО).

Ответ: 0.5

Пример задачи 4:

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет хотя бы один раз.

Рассмотрим все возможные комбинации, которые могут выпасть, если монету бросают дважды. Для удобства будем обозначать орла буквой О, а решку – буквой Р:

ОО ОР РО РР

Всего таких комбинаций получилось 4. Нас интересуют только те из них, в которых орел выпадет хотя бы 1 раз. Таких комбинаций всего три (ОО, ОР и РО).

P = 3 / 4 = 0.75

В задачах по теории вероятностей, которые представлены в ЕГЭ номером №4, кроме , встречаются задачи на подбрасывание монеты и о бросках кубика. Их сегодня мы и разберем.

Задачи о подбрасывании монеты

Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.

В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р (решка) и О (орел). Так, исход ОР означает, что при первом броске выпал орел, а при втором – решка. В рассматриваемой задаче возможны 4 исхода: РР, РО, ОР, ОО. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна .

Ответ: 0,5.

Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза.

Всего возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «орёл выпадет ровно два раза» 3 исхода: РОО, ОРО, ООР. Искомая вероятность равна .

Ответ: 0,375.

Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.

Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» (такое предположение не влияет на вычисление вероятностей). Тогда возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «решка выпадет ровно один раз» 3 исхода: РОО,ОРО,ООР. Искомая вероятность равна .

Ответ: 0,375.

Задача 4 . Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО (в первый раз выпадает решка, во второй и третий - орёл).

Как и в предыдущих задачах, здесь имеется 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Вероятность наступления исхода РОО равна .

Ответ: 0,125.

Задачи о бросках кубика

Задача 5. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»?

Задача 6 . Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

Вообще, если бросают игральных костей (кубиков), то имеется равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают раз подряд.

Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 – 3, 2 – 2, 3 – 1. Их количество равно 3. Искомая вероятность равна .

Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Таким образом, приблизительно равна 0,083…, округлив до сотых имеем 0,08.

Ответ: 0,08

Задача 7 . Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1–1–3, 1–3–1, 3–1–1, 1–2–2, 2–1–2, 2–2–1. Их количество равно 6. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Приблизительно получаем 0,027…, округлив до сотых, имеем 0,03.Источник “Подготовка к ЕГЭ. Математика. Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Условие

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что во второй раз выпадет то же, что и в первый.

Решение

  1. Данную задачу будем решать по формуле:

Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.

  1. Применим данную теорию к нашей задаче:

А – событие, когда во второй раз выпадет то же, что и в первый;

Р(А) – вероятность того, что во второй раз выпадет то же, что и в первый.

  1. Определим m и n:

m — число благоприятствующих этому событию исходов, то есть число исходов, когда во второй раз выпадет то же, что и в первый. В эксперименте бросают монету дважды, которая имеет 2 стороны: решка (Р) и орел (О). Нам необходимо, чтобы во второй раз выпадет то же, что и в первый, а это возможно тогда, когда выпадут следующее комбинации: ОО или РР, то есть получается, что

m = 2, так как возможно 2 варианта, когда во второй раз выпадет то же, что и в первый;

n – общее число всевозможных исходов, то есть для определения n нам необходимо найти количество всех возможных комбинаций, которые могут выпасть при бросании монеты дважды. Кидая первый раз монету может выпасть либо решка, либо орел, то есть возможно два варианта. При бросании второй раз монету возможны точно такие же варианты. Получается, что

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Решение задач по теории вероятностей. Учитель математики МБОУ Нивнянская СОШ, Нечаева Тамара Ивановна

2 слайд

Описание слайда:

Цели урока: рассмотреть разные виды задач по теории вероятностей и методы их решения. Задачи урока: обучить распознавать различные разновидности задач по теории вероятностей и совершенствовать логическое мышление школьников.

3 слайд

Описание слайда:

Задача 1.В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

4 слайд

Описание слайда:

Задача 2.Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

5 слайд

Описание слайда:

Задача 3.В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение: Для того чтобы найти вероятность указанного события, необходимо рассмотреть все возможные исходы эксперимента, а затем из них выбрать благоприятные исходы (благоприятные исходы – это исходы удовлетворяющие требованиям задачи). В нашем случае, благоприятными будут те исходы, в которых при двух бросаниях симметричной монеты, орел выпадет только один раз. Вероятность события вычисляется как отношение количества благоприятных исходов к общему количеству исходов. Следовательно, вероятность того, что при двух кратном бросании симметричной монеты орел выпадет только один раз, равна: Р=2/4=0,5=50% Ответ: вероятность того, что в результате проведения вышеописанного эксперимента орел выпадет только один раз равна 50%. Номер эксперимента 1-ый бросок 2-ой бросок Сколько раз выпал орел 1 Орел Орел 2 2 Решка Решка 0 3 Орел Решка 1 4 Решка Орел 1

6 слайд

Описание слайда:

Задача 4. Игральный кубик бросили один раз. Какова вероятность того, что выпало число очков, большее чем 4. Решение: Случайный эксперимент – бросание кубика. Элементарное событие – число на выпавшей грани. Ответ:1/3 Всего граней: 1, 2, 3, 4, 5, 6 Элементарные события: N=6 N(A)=2

7 слайд

Описание слайда:

Задача 5. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых. Решение: Вероятность попадания = 0,8 Вероятность промаха = 1 - 0,8 = 0,2 А={попал, попал, попал, промахнулся, промахнулся} По формуле умножения вероятностей Р(А)= 0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 Р(А)= 0,512 ∙ 0,04 = 0,02048 ≈ 0,02 Ответ: 0,02

8 слайд

Описание слайда:

Задача 6.В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Ответ округлите до сотых Решение: Элементарный исход в этом опыте – упорядоченная пара чисел. Первое число выпадет на первом кубике, второе – на втором. Множество элементарных исходов удобно представить таблицей. Строки соответствуют количеству очков на первом кубике, столбцы –на втором кубике. Всего элементарных событий п = 36. Напишем в каждой клетке сумму выпавших очков и закрасим клетки, где сумма равна 6. Таких ячеек 5. Значит, событию А = {сумма выпавших очков равна 6} благоприятствует 5 элементарных исходов. Следовательно, т = 5. Поэтому, Р(А) = 5/36 = 0,14. Ответ: 0,14. 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12

9 слайд

Описание слайда:

Формула вероятности Теорема Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где Cnk - число сочетаний из n элементов по k, которое считается по формуле:

10 слайд

Описание слайда:

Задача 7. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза. Решение По условию задачи, всего бросков было n =4. Требуемое число орлов: k =3. Подставляем n и k в формулу: С тем же успехом можно считать число решек: k = 4 − 3 = 1. Ответ будет таким же. Ответ: 0,25

11 слайд

Описание слайда:

Задача 8. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу. Решение Снова выписываем числа n и k. Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу: Напомню, что 0! = 1 по определению. Поэтому C30 = 1. Ответ: 0,125

12 слайд

Описание слайда:

Задача 9.В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Решение: Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий. Пусть p1 - вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем: Теперь найдем p2 - вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем: Чтобы получить ответ, осталось сложить вероятности p1 и p2. Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем: p = p1 + p2 = 0,25 + 0,0625 = 0,3125 Ответ: 0,3125

13 слайд

Описание слайда:

Задача 10.Перед на­ча­лом во­лей­боль­но­го матча ка­пи­та­ны ко­манд тянут чест­ный жре­бий, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Ста­тор» по оче­ре­ди иг­ра­ет с ко­ман­да­ми «Ротор», «Мотор» и «Стар­тер». Най­ди­те ве­ро­ят­ность того, что «Ста­тор» будет на­чи­нать толь­ко первую и по­след­нюю игры. Ре­ше­ние. Тре­бу­ет­ся найти ве­ро­ят­ность про­из­ве­де­ния трех со­бы­тий: «Ста­тор» на­чи­на­ет первую игру, не на­чи­на­ет вто­рую игру, на­чи­на­ет тре­тью игру. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий. Ве­ро­ят­ность каж­до­го из них равна 0,5, от­ку­да на­хо­ дим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.

Задачи на подбрасывание монет считаются довольно сложными. И перед тем как решать их, требуется небольшое пояснение. Задумайтесь, любая задача по теории вероятностей в итоге сводится к стандартной формуле:

где p - искомая вероятность, k - число устраивающих нас событий, n - общее число возможных событий.

Большинство задач B6 решаются по этой формуле буквально в одну строчку - достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n . В этом и состоит вся сложность.

Тем не менее, существует как минимум два принципиально различных метода решения:

  1. Метод перебора комбинаций - стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные;
  2. Специальная формула вероятности - стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами.

Для решения задачи B6 надо знать оба метода. К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали!

Метод перебора комбинаций

Этот метод еще называется «решение напролом». Состоит из трех шагов:

  1. Выписываем все возможные комбинации орлов и решек. Например: ОР, РО, ОО, РР. Число таких комбинаций - это n ;
  2. Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. Считаем отмеченные комбинации - получаем число k ;
  3. Осталось найти вероятность: p = k : n .

К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Для 3 монет их уже 8, а для 4 - 16, и вероятность ошибки приближается к 100%. Взгляните на примеры - и сами все поймете:

Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

Итак, монету бросают два раза. Выпишем все возможные комбинации (O - орел, P - решка):

Итого n = 4 варианта. Теперь выпишем те варианты, которые подходят по условию задачи:

Таких вариантов оказалось k = 2. Находим вероятность:

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения.

Специальная формула вероятности

Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните:

Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле:

Где C n k - число сочетаний из n элементов по k , которое считается по формуле:

Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.

На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.

Задача. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.

По условию задачи, всего бросков было n = 4. Требуемое число орлов: k = 3. Подставляем n и k в формулу:

Задача. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем числа n и k . Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу:

Напомню, что 0! = 1 по определению. Поэтому C 3 0 = 1.

Задача. В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.

Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.

Пусть p 1 - вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем:

Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем:

Чтобы получить ответ, осталось сложить вероятности p 1 и p 2 . Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:

p = p 1 + p 2 = 0,25 + 0,0625 = 0,3125

 


Читайте:



Возьми монету для проведения фокуса

Возьми монету для проведения фокуса

64 48 911 0 В любой компании всегда найдется человек, умеющий развеселить и поднять настроение. Зачастую это хороший рассказчик, любитель...

Карты колумбии В каком полушарии Полярный день длится дольше

Карты колумбии В каком полушарии Полярный день длится дольше

1. Объясните, почему глобус называют объёмной моделью Земли. Глобус практически полностью повторяет формуц земли, положение объектов и ее...

Игры на воде в лагере для детей Правила поведения на воде

Игры на воде в лагере для детей Правила поведения на воде

В летнем лагере, игры в воде считаются самым лучшим развлечением для детей. Во время их проведения, ребята смогут подружиться и неплохо...

О «святочных гаданиях» и картах Можно ли играть в карты ночью

О «святочных гаданиях» и картах Можно ли играть в карты ночью

Игральные карты связаны с поруганием христианства и являются непосредственным орудием общения человека с бесами. Все четыре картежные масти...

feed-image RSS